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Abstract. We study the chiral phase transition at finite temperature in the linear sigma model by employing
a self-consistent Hartree approximation. This approximation is introduced by imposing self-consistency
conditions on the effective meson mass equations which are derived from the finite temperature one-loop
effective potential. It is shown that in the limit of vanishing pion mass, namely when the chiral symmetry
is exact, the phase transition becomes a weak first order accompanying a gap in the order parameter as
a function of temperature. This is caused by the long range fluctuations of meson fields whose effective
masses become small in the transition region. It is shown, however, that with an explicit chiral symmetry
breaking term in the Lagrangian which generates the realistic finite pion mass the transition is smoothed

out irrespective of the choice of coupling strength.

PACS. 25.75.-q Relativistic heavy-ion collisions — 11.30.Rd Chiral symmetries — 12.39.-x Phenomenolog-

ical quark models

1 Introduction

Chiral symmetry plays a vital role in low energy phe-
nomenology of pion-pion and pion-nucleon interactions
[1]. The symmetry is manifest in the underlying QCD La-
grangian in the limit of vanishing quark mass, but it must
be broken spontaneously in the QCD vacuum. Histori-
cally, the profound implication of this phenomenon to the
very existence of the pion was first conjectured by Nambu
[2], long before the advent of QCD, in analogy to the BCS
theory of superconductivity, and it led Goldstone [3] to ex-
plore more general consequences of the broken symmetry
discovering his celebrated theorem.

There are many reasons to believe that this hidden
chiral symmetry becomes manifest at high enough tem-
peratures. One can take an analogy to the spin systems
in statistical mechanics, like the Ising or Heisenberg mod-
els, where the spontaneous magnetization disappears as
the temperature of the system is raised above the critical
temperature: this is a prototype of the phenomena gener-
ally known as the order-disorder phase transition [4]. Field
theoretical analog of the order-disorder phase transition
at finite temperature was first investigated by Kirzhnits
and Linde [5] in the context of electro-weak interaction
in cosmological setting, and then a systematic method of
computation was developed by Dolan and Jackiw [6] and
others [7].
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A great amount of works have appeared in the lit-
erature on the problem of the chiral symmetry restora-
tion at high temperatures and at high baryon density. Lee
and Wick [8] conjectured the possible existence of “ab-
normal state” of dense cold nuclear matter where the chi-
ral symmetry is restored. Baym and Grinstein [9] stud-
ied the chiral phase transition at finite temperature by
applying the approximation methods developed earlier in
many-body theory. These early expositions of the prob-
lem used the linear ¢ model [10] which is suited for
studying the role of the quantum fluctuation since the
model is renormalizabile at least at the level of perturba-
tive computation [11]. Non-perturbative aspects of QCD
at finite temperature have been studied more recently by
the Monte Carlo method for the Euclidean path integral
formulations of QCD on finite size lattice; such studies
have shown that the chiral transition is abrupt and closely
related to the quark-liberating deconfining transition [12].
There are many other works based on various phenomeno-
logical chiral models such as the four-fermion (quark) in-
teraction model of Nambu-Jona-Lasinio (NJL) type [2,
13]; the non-linear sigma model of Weinberg which may
be considered as an effective theory of QCD at low ener-
gies [14]; and an extended form of the linear sigma model
to study the flavor number dependence of the critical be-
haviors of the phase transition in the chiral limit [15] and
the pattern of symmetry breaking due to the finite quark
masses [16].

Recent renewed interests in the problem are partially
due to the suggestion by Bjorken [17] and others [18] that
there may be some observable consequences of the chiral
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symmetry breaking transition if it occurs in the course of
a highly relativistic collision of hadrons or nuclei; a chi-
ral condensate may occasionally grow in a wrong direc-
tion as a fluctuation during the rapid cooling of the dense
hadronic matter (quark-gluon plasma) produced in such
a collision and this may result in a significant fluctuation
in the number ratio of charged and neutral pions.

In this paper we re-examine the chiral phase transi-
tion at finite temperatures in terms of the linear sigma
model. Our purpose is to describe the phase transition in
static equilibrium in a simple self-consistent approxima-
tion, which is well-known in the many-body theory as the
Hartree approximation. We will not address more difficult
problem of describing the dynamics of the phase transition
[19,20] in the present work.

We adopt the original form of the Gell-Mann—Levy lin-
ear sigma model since its simplicity to represent the chiral
symmetry is most suited for our purpose of investigating
the symmetry aspect of the phase transition. The model
also has an advantage of being renormalizable at least in
the perturbative sense. The Lagrangian density is given
by [21]

L= Es + Esb (1)

with

Lo =0l 0+ g0 +im 7)o+ 5((00)2 + (9m)?)

m? A
_7(0.2_,'_7.‘_2)_1(0_2_’_7_‘_2)27 (2)
»Csb = —€o (3)

where 1, o, and 7 represent the nucleon, sigma, and pion
fields, respectively. The term L is symmetric and invari-
ant under an SU(2) 1, x SU(2) g chiral group. The right and
left combination % = 1(1++5)y, ¢ ¥ = 1(1—~°)1 trans-
form respectively according to the representation (1/2,0)
and (0,1/2) while the sets (o, 7) belong to the (1/2,1/2)
representation. Ly, is the symmetry breaking term. Two
Noether’s currents associated with (2), namely the vector
current and the axial vector current, are given by

- T
V= ¢7u§¢ +m x0T,

— T
A, =Yy §¢ + 00, ™ —wo,0o

respectively. The equations of motion for the fields derived
from the Lagrangian density (2) give the PCAC relations

0 A" = em. (4)

In the following investigation, we concentrate on the fi-
nite temperature behavior of the theory at zero net baryon
density or zero chemical potential for baryonic charge and
we will focus on the meson sector of the Lagrangian (2)
which is O(4) invariant under the rotation of the meson
multiplet (o, 7). This may be justified at low temperature
where the thermal creation of baryon-antibaryon pairs is
suppressed due to the large baryon mass. This may not be
the case, however, in the transition region where the effec-
tive baryon mass becomes small [22]. Inclusion of baryonic
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fluctuation is straightforward but we omit it here for the
consistency of our approximation scheme (see Appendix
A).

All informations concerning the equilibrium properties
of the system are contained in the thermal (imaginary-
time) Green’s functions defined by the ensemble average
of the “time ordered” products of the quantum fields in the
imaginary-time Heisenberg representation, ¢(z) = ¢(r, 7)
=™ (r)e 7 23]

G(QM) (3517 e 7xm)

(Trd(z1) - b))
B G s ICID R ICMY)
Tr e BH

where H is the Hamiltonian of the system and 8 = 1/kpT
is the inverse temperature. The time ordering operator 7’
rearranges the field operator with the smallest value of 7
(0 < 7 < () at the right of the sequence. The thermal
Green’s function can be expressed in the Euclidean path
integral form [24,22]:

GO (ar, ) = 25 / DIBé() - blem)

xexpl [ doL(6.00)  (0)
B

where L(¢,0¢) is the Lagrangian density of the system

in the Euclidean metric, obtained by the substitution,

0¢(x) /0t — 10p(x) /0T, and
Zy=r e = [ Dlg)exs] /ﬂ FoL(6,00)]  (7)

is the partition function of the system. Here we have intro-
duced a short hand notation for the Euclidean space-time
integral: fﬁ dz = [d®r foﬁ dr. In the above expression
the functional integration over the classical field variable
¢(r, ) defined in the range 0 < 7 < 8 is performed with
periodic boundary condition: ¢(r,0) = ¢(r, 5).

The real-time Green’s functions, which describe the
propagation of an external disturbance introduced in the
system in equilibrium, may be obtained from the imaginary-
time Green’s function by the analytic continuation 7 — it
[23]. Therefore, the thermal Green’s function also contains
some dynamical properties of the system (for weak pertur-
bations) such as the effective mass of the excitations which
we wish to study in this paper. The well-known advantage
of using the thermal Green’s function is that it allows one
to use systematic perturbation series expansion and eval-
uate each term by the method of the Feynman graphs.

In this paper, we study the temperature dependence
of the sigma condensate and the effective meson masses
(in imaginary time Green’s function of mesons), by a self-
consistent non-perturbative approximation, which we call
Hartree approximation.

There are several different ways to formulate similar
non-perturbative approximation schemes which are gen-
erally referred to as “Hartree approximation”. One ap-
proach [25] is to start directly from the equation of mo-

tion of (¢(x)) which contains coupling to the three-point
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thermal (real-time) Green’s functions and approximate

the latter in terms of (¢(x)) and the two-point Green’s
function. This approach involves real-time Green’s func-
tion and therefore the diagrammatic (perturbative) inter-
pretation of the approximation may be rather involved
[26]. The other approaches include the Gaussian approx-
imation [28] to the density matrix expressed in terms of
the functional Schrédinger representation of quantum field
theories [29], and the finite temperature extension [27]
of the two-loop approximation to the Cornwall-Jackiw-
Tomboulis composite operator effective potential [30]; these
approximation schemes are essentially equivalent to the
so-called Gaussian effective potential method [31]. It is
known, however, that in the latter approaches one en-
counters a difficulty that the Goldstone theorem appears
to be violated in the broken symmetry phase in the sense
that the variationally determined masses do not respect
the Goldstone theorem exactly [31]; to find the massless
Goldstone mode, one need to go further with the calcula-
tion to include the effects of residual interactions [32].

These “Hartree approximations” are related [20], al-
though not identical [33], to a more rigorous treatment of
the O(N) sigma model for large N [34]. The leading ap-
proximation in the 1/N expansion respects the Goldstone
theorem, however, it predicts [35], after proper renormal-
ization, unphysical behaviors in physical 3 4+ 1 space-time
dimension [36].

In this work we follow the approach originally taken by
Dolan and Jackiw [6] based on the loop expansion [42] of
the effective potential. We extend the Dolan-Jackiw self-
consistency conditions for the effective meson masses (the
gap equations) to the case with non-vanishing condensate
in a way consistent with the Goldstone theorem. One of
the advantages of this approach, although slightly lengthy
in derivation, is that the diagrammatic interpretation of
the approximation is rather straightforward; we later use
it to check the consistency of the approximation for a pos-
sible extension to include fermion loops in Appendix A.

In the next section we review the effective potential
and its loop expansion at finite temperature. We will apply
the method to calculate the effective mass of the mesonic
excitations at finite temperature in Sect. 3 and then intro-
duce the Hartree approximation. We formulate our Hartree
approximation by imposing a self-consistency condition
on the effective meson mass equations derived from the
effective potential in one-loop approximation, which are
nothing but the Schwinger-Dyson equations for the ther-
mal meson two-point Green’s functions at zero external
meson momenta.

The resultant gap equations contain ultraviolet diver-
gent integrals associated with the vacuum fluctuation and
therefore requires renormalization. We encounter a diffi-
culty in imposing renormalization conditions to absorb the
infinities in the redefinitions of the mass parameter and
the coupling constant as in the perturbative renormaliza-
tion scheme: the only consistent renormalization condi-
tions in our nonperturbative approximation scheme give
symmetric solutions. This difficulty led us to adopt the
phenomenological approach to ignore the vacuum polar-
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ization effects and to retain only thermal fluctuation in
calculating the loop integral in the gap equation. We con-
sider that this is a sensible approach to circumvent the
difficulty since our model should be at best considered
as a low energy effective theory of the strong interaction
which inherently contains cut-off A at some hadronic scale
[37]. Our prescription is technically equivalent to setting
A =0 in computing the vacuum loops. When seen in per-
turbation series, our procedure removes all meson-meson
vertices involving five or larger number of external mesons
which couple to vacuum loops.

In Sect. 4 we examine the numerical solutions of the
resultant gap equation. We will show first that in the ex-
act chiral limit they exhibit a nontrivial hysteresis behav-
ior characteristic of the first order phase transition. Such
behavior was also noted earlier by Baym and Grinstein
[9] and others [38—40,27] in a similar self-consistent ap-
proximation. We will show from the analysis of the gap
equations that this hysteresis behavior is caused by the
long range fluctuations of the meson fields which become
soft in the transition region. It is not known to us whether
this behavior is merely an artifact of our approximation
or can survive more exact treatments. [41] As to the or-
der of the phase transition in QCD, the results from the
lattice Monte Carlo simulations are not yet conclusive for
the two massless flavor case, although an argument exists
for the second order transition based on the universality
consideration [15] which, however, assumes that the quan-
tum fluctuations, i. e. the modes with non-zero Matsubara
frequencies, are suppressed in the transition region and
thus the system behaves essentially as a classical system
in three spatial dimensions.

The order of the phase transition in the chiral limit
may be considered as a rather academic problem: in the
case of the second order phase transition, introduction of
any finite realistic value for quark masses will immedi-
ately smear out the singularity of the phase transition.
On the other hand, in the case of the first order phase
transition, there still remains a possibility that the dis-
continuity remains with a small quark masses [16]. It will
be shown, however, that our hysteresis disappears when
we introduce explicit symmetry breaking term consistent
with PCAC irrespective of the choice of coupling.

A short summary and conclusions are given in Sect. 5.
Two appendices contain the discussion on the inclusion of
the baryon fluctuation and the high temperature expan-
sion of the loop integral. Throughout the paper we use the
natural unit: c=h = 1.

2 The effective potential at finite
temperature

In this section we review the effective potential formalism
and the loop expansion at finite temperature. The finite-
temperature effective potential for the linear o model is
given up to the one-loop order.
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2.1 Some general formalism

The thermal Green’s functions (4) can be obtained from
the generating functional Wa[J]:

M = Z31) = (T expl | dtadla)I@) (8)

B
- 2;" [ Diglewsl /ﬁ a4 (L(6,00) + 67)

by the functional differentiation with respect to the “ex-
ternal source” J(x). For example, the thermal average of

the field operator gB(x) is given by

(oo =272

(9)

J=0

and the other thermal Green’s functions can be extracted
from the following Taylor series by proper functional dif-
ferentiations:

1 m
Ws(J) = Zg/ﬁd“xlmd‘lme(ﬁ )
n=1 "

X (21, ) (1) - - J(2m).(10)

The effective action Ig[¢] is defined by the (functional)
Legendre transform of the generating functional:

I5(é] = WslJ] - /ﬁ dhwd(z) T (x) (11)

where J(z) on the right hand side is considered to be a
functional of ¢(x) determined by ¢(x) = §W;s[J]|/6J(z).
It follows then that

815001 _ 4,
sp(x) /@)

and therefore the thermal expectation value of the field (8)
corresponds to a stationary point of the effective action,
while the “curvatures” of the effective action at such local
minimum are related to the two-point thermal Green’s
function:

82T5(g]
6p(x)oo(x)

(12)

_0J(2)
69(y)

In the following analysis, we assume that the system is
homogeneous and therefore translationally invariant as
in the vacuum. In this case the expectation value of the
field becomes independent of z, and the two-point ther-

(2)
J=0

(z,y)"". (13)

J=0

mal Green’s function Gg)(a:,y) becomes a function only
of the difference of two space-time arguments; its Fourier
transform is therefore given by

(2 ; 2

G (k) = /ﬂ d'ze** G (z,y) (14)
where k = (wp,, k) and w,, = 2mn3~! with integer n is the
discrete Matsubara frequency.
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The effective potential V5 is defined by the effective
action with the constant ¢(x):

Va(do) = —I[9]/ 92

where 2 = | P d*z = 3 Ik d3r is the four-volume of the

Euclidean space-time. The thermal average of the field is
now determined by the stationary condition of the effec-

tive potential:
9Vs(¢o)

900 "
Since the effective potential corresponds to a part of I'z[¢]
which contains only k& = 0 mode of ¢}, = fﬁ d*zo(x)e*,
its second derivative with respect to ¢g gives the Fourier
component of two point Green’s function evaluated at zero
external momenta;:

9*Vi (o)
003

for (15)

(16)

=GP0 (17)

The path integral expression (9) of the generating func-
tional Wg[J], together with the definition of the effective
action (11), allows one to derive a loop expansion of the
effective potential Vs [42,6]:

Vis(0) = Vol(eo) + Vi (¢0) + AVZ(g0),

where the first term Vj(¢g), the tree approximation, is the
potential term in the classical Lagrangian. This term is
independent of the temperature. Temperature dependent
one-loop term Vlﬁ and higher loop corrections AV# are
obtained by the following procedure: We decompose the
original Lagrangian by shifting the field, ¢(z) = ¢o+¢'(z):

(18)

L) = Li[@'; do]+ L[5 do] — Vo+linear terms—+constant,

(19)
where L{[¢', ¢o] is a bilinear form of the shifted fields ¢'(z)
and the new interaction term L} contains higher order
products of ¢'(x). The one-loop contribution V; to the
effective potential is then given by

o~ Vi(60:6) _ /DW] exp[/ﬁ d*zLy(¢';00)].  (20)

Since this functional integral is Gaussian it is easily per-

formed:
1

VP (¢0) = -3 (21)

o,
B8
where we have introduced a short hand notation for the

integrals over the momenta and the sum over the discrete
Matsubara frequencies:

frr= Y g [

and the “free” propagator D(k, ¢g) is defined by

4 AP _ 41 -1 72
/ﬁd xLy[d", do _/[ad k2D (k, do) s
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The multi-loop corrections AV is given by

e~ AV (60:8)
D¢ explfyd
- Dy

which can be interpreted diagrammatically as the sum of
all single particle irreducible connected graphs involving
the vertex functions given by the shifted interaction La-
grangian £ with no external leg and internal lines are
associated with the “free” propagator D(k : ¢o).

In passing we note that the effective potential can be
physically interpreted as the Helmholtz free energy density
of the system in the presence of “self-magnetization” ¢q:

Va(¢o) = a(T, ¢o) = g(T,J) — ¢o,

B [ﬁ[ fd3r¢;('r)J]

kT _gla—
g(T,J):f%lnTre ,

 (Lo(¢'5 d0) + L1(¢'5 ¢0))]

Texpl[, A Ly(#; fo)] (23)

(24)
(25)

where g(T', J) corresponds to the Gibbs free energy density
of the system with the “external field” J. From the ther-
modynamic relations, it is related to the pressure P(T), ¢g)
of the system by

V(o) =

P(T, ¢o). (26)

2.2 Effective potential for the linear 0 model

The leading terms of the loop expansion of the finite tem-
perature effective potential for the O(N) o model was
computed by Dolan and Jackiw [6]. If we ignore the baryon
sector in the o model Lagrangian, the meson sector of the
Lagrangian has the O(4) symmetry with respect to the
rotation of the meson fields ¢,(z) = (o(x), 71 (), m2(),
m3(x)) in the limit of vanishing pion mass. This symmetry
is directly reflected in the effective potential Vz(¢,) at all
temperatures and the spontaneous symmetry breaking is
signaled by the appearance of the minima of Vz(¢,) at
non-vanishing ¢,.

The leading term of the loop expansion of the effective
potential is given for the linear o model by

Vo(da) = %m2¢2 + %W‘ — €o. (27)
This term is independent of temperature and contains the
symmetry breaking term proportional to . As we shall
see below this is the only term which depends on the
symmetry-breaking term in the Lagrangian L, : all other
terms due to quantum fluctuations therefore should de-
pend only on ¢? = ¢ ,.

To compute the one-loop contribution Vlﬁ ( and higher
loop corrections AV?), we shift each component of the
fields by a constant amount ¢,: ¢, () = ¢, () + ¢, and
decompose the Lagrangian density:

Llpa] = Lo(¢4 (%), ba) + L1(84(2), Pa)

+linear terms + constant, (28)
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where the shifted “free Lagrangian” Lo(¢/,(z), ¢o), which

is bilinear in the shifted fields ¢/, is given by
- 1
Lo (¢a (x)a d)a) = 5 (a¢aa¢a - d)amibd)b) (29)
with the mass square matrix given by
1. - 1. - -
m2, = [m? + 6A¢2]5ab + 3A0ad, (30)

where ¢? = Yo #2 and hereafter all repeated field sub-
script imply the sum if not otherwise indicated. The shifted
interaction Lagrangian becomes
- 1. - 1
L1(a(7), $a) = —5Abada(2)¢(z) — ;A6 (@) (31)
The shifted free Lagrangian Ly determines the free
propagator at finite temperature:

/ A2 Lo(a(), D) = / 0K ())D (k. B0)asdo(F)
B

_ (32)
where [D™Y(k, ¢o)lap = k%6ap + m2, with k% = w2 + k2.
The diagonalization of this matrix can be performed by

rotating the fields to ¢/, = Oup¢ = (9,0,0,0):
Ouar [ ( ¢a)] O b’b
K +m? 0 0 0
_ 0 k% +m? 0 0
= o 0 K+mZ 0 (33)
0 0 0 k% +m3
where
1 -
mi =m?+ §>\¢2 (34)
1
m3 =m? + 6)«;52
and we find
7 1 (lga(lgb 1 (Eaéb
Da ka a) = = 611 - = .
hide) = it g2 +W+m%<b 52
(35)

The one-loop contribution to the effective potential is
given by

Vf(qfﬁa) — _%/ﬁd‘lklndet D(kﬂlga)]
Pk

:%ﬁ_lzn:/(z

+3In(k? +m3)]

= [(k* +m?)

(36)

where we have indicated the sum over the Matsubara fre-
quency kg = w, = 2rnB~" explicitly. This sum may be
performed by the following formulae:

T 1 1
zn: (2nm)2 +22 2 * er —1 (37)

1
52”:111 [(2nm)? + 2] = ; +Injl—e*|+c (38)
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where the formula (37) can be obtained by the method
of contour integration [23,6] while (38) is derived from
(37) by integration over x. (The constant of the integral
co = %Zn?éo In(2n7)? is actually infinite. ) The result is
summarized as

VP (@a) = VI(a) + Vi (d0) (39)
where
V) = 5 [ s ol +3e(ma)] (0)
W6 =07 [ 8 [l -t
+3In((1 e_ﬁsk(””))} (41)

with ex(m) = vk2 +m?2. The first term V{ is due to the
vacuum fluctuation; this term is divergent but is temper-
ature independent so that it may be removed by some
renormalization procedure : at zero temperature. The tem-

perature-dependent term V can be rewritten by integra-
tion by parts:

~ _ 3 2
o) -- [ 5 [%ﬁg(ek(mn)
k2

+3mf]3(€k(mg)) (42)
where 1
fe(E) = BE ] (43)

is the distribution function for bosons. Recalling that the
effective potential is equal to the pressure of the system
with inverted sign, this term may be interpreted physically
as due to the pressure exerted by the ideal gas of a boson
with mass my and another kind of boson ms with three-
fold degeneracy.

The multi-loop corrections AV? may be computed
from the formula (23) by using the shifted Lagrangian
densities £{ and £}. This term may be interpreted as the
contribution of the interaction among these quasi-particles
(defined by L{)) due to the residual shifted interaction
given by L. We note that both £6 and L} do not de-
pend on the symmetry breaking piece Ly, of the original
Lagrangian dens1ty It therefore follows that AV# should
only depend on ¢2.

3 Self-consistent hartree approximation

In this section we derive a self-consistent approximation
scheme for the computation of the thermal Green’s func-
tion. To motivate the method we first examine the effec-
tive masses of the mesonic excitations at finite temper-
ature using the finite temperature effective potential in
one-loop approximation. The result is used to introduce
a self-consistent Hartree approximation at finite temper-
ature. We show a difficulty in the renormalization pro-
cedure and this leads us to take a phenomenological ap-
proach to redefine our Hartree self-consistency conditions.

Heui-Seol Roh, T. Matsui: Chiral phase transition at finite temperature in the linear sigma model

3.1 Temperature-dependent effective mass in one-loop
approximation

The effective potential V' (¢,) depends only on ¢? in the
absence of symmetry breaking term L, in the Lagrangian.
When we include the symmetry breaking term L, in the
Lagrangian, the only term which breaks this symmetry is
the last term in Vj. It then follows that the stationary
conditions with respect to the variations of ¢, become
degenerate except for the o field:

B _ B

T = (e ptagi e
B B

- <m + A¢2+2a(‘;2)> —0. ()

It is clear that the potential minimum always appear at
m; = 0. In the following, we therefore assume 7; = 0 and
consider only the first condition (44) which determines the
potential minimum at & = 5o = \/@2.

Having determined the equilibrium conditions for the
condensate amplitude, we now compute the second deriva-
tives of the effective potential at the potential minimum;
this determines the inverse two-point thermal Green’s func-
tions in one-loop approximation at k£ = 0, Whlch corre-
spond to the mass square of the excitation, G7* G.o/m (k =

2 .
0) = M2,
92vyP
M§Zm§+<8(_f§> +--, (46)
6=00,7=0
82‘/5
Mﬁ:m%—F(aW;) +ee (47)
=6¢,7=0

where the first terms came from the differentiations of
the tree effective potential V{, and the explicit form of the
contributions from the one-loop term (36) are given by

o2vP 1 1 1
— :—A/d4k<2 5+ = 2)
g2 ) 20y k2 +m2 " k2 +m2
0=00,T=
—1A252/d4k
2 B
1 1
48
(G s ) 9

lA/d‘*k
2 Js

1 1
. 4
<k2+m +k2+m) (49)
Since 5
02V}
=0 50
<8&37‘ri>_ s (50)

there is no ¢ and 7 mixing even at finite temperature.
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‘We note that since

1 . 1 1
_5)‘/,36[ k<k2+m%+k2+m§)

the stationary condition (44) for the o field gives the fol-
lowing relation for the pion mass

Mé,wao(ﬁ) =€

vy
9(¢?)

(51)

(52)

in the one-loop approximation. In the vacuum (8 = o)
the condensate amplitude 7o is equal to the pion decay
constant f defined by the transition matrix element of
the axial current (0|A7,(x)|7"(q)) = i6jxqu fre """ since
A}, = 00,m; — ;00 in our model. Therefore we have

m fr = e (53)
in the vacuum. The above relation guarantees that if we
have exact O(4) symmetry in the Lagrangian (e = 0), the
pion becomes massless when Gy # 0, consistent with the
Goldstone theorem.

3.2 Self-consistency conditions for the Hartree
approximation

The equations (46) and (47) are nothing but the Schwinger-
Dyson equations for the two-point thermal Green’s func-
tions evaluated at zero momentum:

-1

-1 7
G _Dﬁ,o/ﬂ'

bo/x(k=0)

(k=0)+ g ,/x(k=0) (54)
where Ilg ,/(k) is the self-energy of o and pions with
Euclidean momentum k = (wy,, k) respectively. In the one-
loop approximation these self-energy terms are evaluated
for the one-loop Feynman graphs shown in Fig. 1 using
Dg (k) for the internal propagators.

This observation suggests [6] that a partial sum of the
infinite series of the loop expansion may be made by im-
posing the self-consistency condition on the one-loop re-
sult replacing the propagators D,,,(k) for the intermal

’ RN
? ) / \
o o o N ,' o
—_——
@ (b)
T o

Fig. 1. One-loop self-energy diagrams for o, a and b, and for
pions, ¢ and d. Solid line is the free sigma meson propagator
and the dashed line is the free pion propagator
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lines of the one-loop Feynmann diagrams by the Hartree
propagator of the form
H —
Gﬁ,a’/ﬂ'(k) = [kZ + Mg/w] 1' (55)
We define our “Hartree approximation” by imposing self-
consistency conditions for the mass parameters M, /. in-
troduced in this propagator:

1 -
M2 =m® 4 NG+ T (Mo M), (56)

1 -
M2 =m? 4+ G+ Y (M, My) (57)

where two self-energy terms are given by

II§ (Mg, My) = 1T (M, My)

A2 + 25 (M2)]  (58)

with
1

4
d kk2+M2

8,B
where the subscript B is just to remind that the sum is
taken over the boson Matsubara frequency. These are the
generalization of the Dolan-Jackiw “gap equations” for
multi-component fields in the presence of non-vanishing
condensate ¢2. This approximation is called “modified
Hartree approximation” by Baym and Grinstein. Succes-
sive substitutions of the right hand sides of the equations
into the arguments of the self-energy terms generate an
infinite series of “superdaisy diagrams”.

We note that the direct substitution of the internal
propagators in the one-loop self-energy for the o field
would generate an extra term for the o self-energy HEO,

Ds(M?) = (59)

Allg »(k : My, My)

1., 1
Ly {gsfﬁ(k FM2)+ @k M) (60)
where
1
@’k:M2z/d4k’ . (61
[3( ) B (k:’2+M2)((k’—|—k:)2—|—M2) (6 )

(b)

Fig. 2. Schwinger-Dyson equations in the self-consistent
Hartree approximation for thermal sigma meson propagator
a and for thermal pion propagator b
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Fig. 3. The diagrams omitted in our approximation

We have excluded this term since it has non-trivial £ de-
pendence (or “dispersion”) and therefore invalidates our
simple ansatz (55) for the Hartree propagator.

Our prescription for the self-consistent Hartree approx-
imation is not complete yet since we have not specified
the condition for determining the condensate amplitude &
which appears in the self-consistency condition for b0
Our guiding principle here is the Goldstone theorem. We
replace the one-loop stationary condition for the o field
by

1. _ _
m? + 6A02 + 11§ (Mg, Mg)| G =e. (62)

This equation, together with (57), implies
M2 =¢ (63)

so that it guarantees that the pion becomes massless Gold-
stone mode in the limit of ¢ — 0.

3.3 Renormalization

The self-energy terms in one-loop approximation and in
self-consistent Hartree approximation contain (quadratic)
divergences which all originate from the divergent integral
of 3(M). These divergence must be removed carefully by
the renormalization procedure due to the nonlinear struc-
ture of the equations. It turns out, however, that such non-
perturbative renormalization is possible only when there
is no symmetry breaking ¢ = 0 as we shall see below.

We first isolate the divergence in the self-energy terms
by performing the Matsubara frequency sum using the
formula (37): We find

$Br 1 ~

Bs(M) = / Gy B0 (64)

where
(65)

All divergences in the self-energy terms arise from the
phase space integral of the first temperature independent
term. The phase space integral of $3(M) converges due to
the ultraviolet cut-off by the distribution function fg(ex)
and this term vanishes at zero temperature. To regularize
the divergent integral we introduce a ultraviolet momen-
tum cut-off A in the phase space integral:

Bk 1 M? M?
— = = (AN)=M?I,(A ——In— AT
| G = B LA W i I S 047
(66)

Hlfloop.
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where
2
L) = oy (67)
La(A, ) = o [In(14%/p2) — 1] (68)

and p is an arbitrary constant which plays the role of a
renormalization scale.

We seek the renormalization conditions for the bare
parameters (m, A\) so that the resultant equations are writ-
ten only in terms of the renormalized parameters (mpg, Ar)
and contain only finite terms. For this purpose it is conve-
nient to rewrite (56) and (57) in a more symmetric form.
We first add the two equations:

2
M2+ M?=2m? + g)\ﬁz + AN [@s(M,) + Pp(M,)]

= 2m2+2)\11(/1)+§)\52 — Ao (A, ) (M2 +M?)

M2 2 M2 M2
A Lo e il M
+ {1671'2 . 12 + 1672 /.L2:|

A [55(Mg) + @;(Mw)} (69)

where we have used (66) in deriving the second line. This
equation may be rewritten as

2
M2+ M? = —2m% + g)\352 + Ar
M? M? M? M?
X 71
|:167T2

n ,u_QU +—"1In M—Q’T + Pp(M,) + 5255(M,r)}(70)
by imposing the following renormalization conditions:

1672

m> m?

—E = T'i‘[l(/l)a (71)
1.1 + (A, 1) (72)
)\R - B\ 24, 1)

On the other hand, however, the subtraction of (57) from
(56) gives another relation

M? — M? = 1e?

3 (73)

which contains the bare coupling A. In the limit of A — oo,
the bare coupling goes A — 0_ for any finite Ar, hence we
find

M, = M, (74)

and in this case the renormalized self-consistency condi-
tion (70) becomes simply

2 2

1 ~
2 2 —2

for M = M, = M,. Unfortunately, this renormalization
scheme is possible only when the symmetry is not broken
6 = 0 and ¢ = 0 and does not apply for the broken-
symmetry phase.
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Similar difficulty was noted in [9] for the finite temper-
ature self-consistent approximation similar to ours. Our
renormalization conditions (71) and (72) for the symmet-
ric phase are essentially the same as those used in the
1/N expansion [34]. It is known that this renormalization
scheme also has difficulties associated with the negative
(although infinitesimally small) value of the bare coupling
[35,36].

Having seen the difficulty in finding the decent renor-
malization conditions for our self-consistency conditions,
we take an phenomenological approach to the problem:
we replace the divergent integral @5(M?) by its finite
temperature-dependent piece ®5(M?) simply discarding
the divergent integral associated with the “vacuum loops”.
We therefore impose

1 1. 7~ ~
M2 = m? 4+ 235% + DX [Ba(M2) + B5(M2)], (76)
1 1 7~ ~
M2 = m? + 2267 + A [B5(M2) + B5(M2)| (77)
for the temperature-dependent effective masses and

1 1 ~ ~
m? 4+ 2067 + S (qsﬁ(Mg) + qsﬁ(Mi))} g=c (78
for the condition to determine the amplitude of the con-
densate.

The physical rationale for this procedure is the obser-
vation that the last two terms in the meson self-energy,

e.g.
1= 2 L= 2
SABa(M2) + D Bs(M2)

1 \ A3k 1

4 / (27T)3 Ek(MU)

1 d3k 1
+-A | ————
4 / (27)3 ex (M)

is just due to the forward scattering of a meson by other
mesons of effective mass M, and M, present in the sys-
tem as thermal excitations. Since the ¢ model should be
considered as an effective theory of the underlying mi-
croscopy theory of the strong interaction, namely QCD, it
would be physically sensible to only take into account the
effect of physical excitations in the system as these equa-
tions actually do. This approximation also corresponds to
neglecting the “many-body” interactions among the ther-
mally excited mesons due to the vacuum loops.

Similar procedure to eliminate the vacuum polariza-
tion have been adopted previously by Wakamatsu and
Hayashi [38] and by Larsen [40] for the finite tempera-
ture calculation with the linear sigma model. The former
calculation, however, ignores completely the effect of pion

thermal fluctuation, while the latter violates the Gold-
stone theorem at finite temperature in the chiral limit.

fe(ex(My))

Ie(ex(Mxz)) (79)

4 Numerical analysis of the gap equations

In this section we present numerical solutions of the gap
equations derived in the previous section. It will be shown
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first that in the exact chiral limit the solutions exhibit
hysteresis behavior characteristic of first order phase tran-
sition. We will show, however, that the introduction of the
finite symmetry breaking term washes away this hystere-
sis for any choices of model parameters in accordance with
the physical conditions. Our method of analysis to be pre-
sented in this section is very similar to that of Larsen [40].
Our results differ from Larsen’s in the point that ours
based self-consistent Hartree approximation respect the
Goldstone theorem (in the chiral limit) by construction
while the latter violates it explicitly at finite temperature.

In constructing numerical solutions of the gap equa-
tions (76), (77) and (78), we first note that from (76) and
(77) the effective sigma mass is related to the effective
pion mass by

1
M? = M? + gAaQ (80)
while (77) and (78) imply that the effective pion mass is
related to the strength of the explicit symmetry breaking
term in the Lagrangian density by

M35 =e. (81)

What remains to be done is to solve one of the self-consist-
ency condition, say for the effective sigma mass,

1 1. 7% ~
M2 =m? 4 2007 + DX [Bo(M2) + B5(M2)], (82)

by inserting (80) and (81).

Although the physical value of € is actually given in
terms of the physical pion mass and the pion decay con-
stant by the zero temperature relation (e = m2f,), we
consider € as an external variable and examine how the
solutions of the gap equations depend on the strength of e.

4.1 Exact chiral limit (e = 0):

We first examine the special case when € = 0. In this lim-
iting case the chiral symmetry is the exact symmetry of
the Lagrangian and according to the Goldstone theorem
the pion becomes massless in the low temperature phase
where the symmetry is spontaniously broken. Our approx-
imation scheme in fact guarantees this condition by (81).
At zero temperature, the above relations (80) and (82)

imply
M2(T = 0) = m2 = —2m?, (83)
2(T =0) = ¢g = —6m?/\. (84)

In the symmetry broken phase where ¢ # 0, M =0
and M2 = 1)a?, the self-consistency condition for the
effective sigma meson mass becomes

- 3 - A .
NI = in? 4 SN2+ 5 (12 (L,) + 12 (0)

2+ (55)

where we have introduced dimensionless variable M, =
M, 3, m = mf and the dimensionless function I (y) is
defined by

*° 2dx 1
1P (u) = / - 86
Pws=| S ®)
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Fig. 4. Graphical construction of the solutions of the gap equations (88) and (89): the solid curve depicts the left hand side of
the equations and two dashed lines marked by LT and HT are for the right hand side of (88) and (89), respectively, both as a
function of M2. Crossing points of the solid curve and the dashed line give the solution of the corresponding gap equation

The high temperature expansion of I f ) () appropriate for
small value of p is given in the Appendix B. On the other
hand, in the high temperature symmetric phase, where
0 =0 and M, = M,, the gap equations become degener-
ate to

1

M2 = w2+ A\—TP (1)
272

o

(87)

Using I(ﬁ)(O) = 72 /6 the above two conditions are fur-
ther simplified to

6 @y 24| 2 Llape
1D, == =2 — ZM2| -1 88
IO, = 5 | A (59)
for the low temperature phase, and
6 @y 12 -2 yp2
S1P00L) = [—m? + 2] (89)

for the high temperature symmetric phase.
It is instructive to examine the solutions of the above
equations graphically. In Fig. 4 we plot the function

@) = 219 (@),

w2

(90)

which appear on the left hand side of the above two equa-
tions, by the solid line; the right hand sides of (88) and
(89) are plotted by dashed curves. The intersection of two
curves determines the solutions of the scaled gap equa-
tion, (88) or (89), for the scaled sigma mass square M2.

We note that f(z) is a concave, monotonically decreas-
ing function of z = M2 normalized as f(0) = 1, while
the right hand sides of (88) and (89) are both linear in z.
Since the value of —m? is fixed by the amplitude of vac-
uum condensate at —m? = 1/6A¢2(> 0), the y-intercepts
of the dashed curves (—12m?/\ — 1 for the low tempera-
ture phase; —6m2 /) for the high temperature phase) both
move upward as the temperature is lowered, while the solid
curve remains unchanged.

In the high temperature phase, two curves cross when
—12m2/X > 1. The condition —12/m2?/\ = 1 determines
the “critical” temperature

To = V2¢0 (91)
below which the real solution of (89) does not exist. Note
that Ty does not depend on the strength of the interac-
tion A\. When one approaches to Tj from high temperature
side, the effective sigma mass decreases continuously and
vanishes at T' = Ty. On the other hand, at low temper-
atures below Ty, where —12m2 /X > 1, the dashed curve
for the low temperature phase intersects with the solid
one at one point giving a unique solution to the original
gap equations. As the temperature increases, the effective
sigma mass again decreases. However, it does not vanish
at Tp in this case. Instead, as the temperature increases
slightly above Tj, there appears another crossing point
at small M2 due to the concave shape of the function

@ (i) as plotted against u2. As the temperature is fur-
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Fig. 5. Temperature dependence of the solutions of the gap equations in the chiral limit (e = 0) for the scaled sigma mass
(e = Ms/mop) and the scaled sigma condensate (x = G/¢o) as a function of ¢ = T'/Tp. In the high temperature phase, the
effective pion mass becomes degenerate with the effective sigma mass while it vanishes in the low temperature symmetry broken

phase. The scale of the temperature is set by To = ¢o

ther increased, the two crossing points approach toward
each other and they eventually annihilate at certain tem-
perature T7(> Tp) when the dashed line becomes tangent
to the solid curve.

We show in Fig. 5 the temperature dependence of the
effective sigma mass and the amplitude of the sigma con-
densate, normalized by their zero temperature values given
by (83) and (84) respectively. This plot is made by solving
(88) and (89) respectively for —m? and making parametric
plot of the temperature (o< 1/v/—m?) vs the scaled sigma
mass (ox M, /v/—m?). The scale of the temperature in this
plot is set by the value of Ty which is equivalent to the
amplitude of the vacuum condensate by (91). The system
exhibits a typical hysteresis behavior of first order phase
transition in the exact chiral limit. We note that this hys-
teresis appears always irrespective to the value of X since
the slope of the function f(z) diverges at z = 0. The mag-
nitude of T} depends on A explicitly, however. For larger
A, the slope of the dashed lines in Fig. 4 (b) becomes less
steeper, thus T7 is larger. Since T} is independent of A,
this implies that the region of the hysteresis is larger for
stronger coupling. We next examine how this behavior is
modified when ¢ is finite.

4.2 For € # 0:

As we have noted earlier, € plays the role of externally
applied magnetic field in the case of magnetic phase tran-
sition, therefore we expect that the transition will get
smoother for non-vanishing e.

For our numerical analysis with non-vanishing e, it is
more convenient to use the following dimensionless vari-
ables:

po = My /mo, (92)
r = My /mg, (93)
X = 6/¢o, (94)
t=T/Ty =T/(V2¢0), (95)
€= ¢/(mio), (96)

where mg and ¢( are the sigma mass and the sigma con-
densate at zero temperature in the limit ¢ = 0 as deter-

mined by (83) and (84), respectively. The equations (80),
(81) and (82) then reduce to

po = pix +x°, (97)
3
2 _ 2 2
23 = —143x° + S5t

o (12 (/AT6pa )+ 1 (/2 Brax 1) (99)

respectively. Note that in this form the A dependence of
the gap equation is absorbed into the A dependence of the

argument of the dimensionless function I @) The solutions
of these coupled nonlinear equations depends on two di-
mensionless parameters, A and €. In the limit € — 0 they
coincide with the previous results.

We show in Fig. 6 the é-dependence of the scaled order
parameter x plotted as a function of the scaled temper-
ature t. It is seen that for small values of € the solutions
exhibit hysteresis behavior (the back-bending shape of x).
As € increases, however, the curve stretches out gradually
and for a large value of €, xy becomes a monotonically de-
creasing function of temperature. From an inspection of
the equations (97), (98) and (99), we can see that the effect
of € is expected to become significant when y? ~ p2 = &/x

in (97) or \/A/6pur/t ~ 1 for the argument of the second

1% in (99); the former condition gives € ~ x3 and the lat-
ter € ~ 6t2x/\ for the conditions that a significant modi-
fication is caused by €. This explains why for a relatively
small value of €, say € = 0.001, we see in the plot that
a considerable modification appears at small y, x < 0.1,
and that for larger A the effect is more significant. We
found that the critical value of € for the disappearance of
the trace of hysteresis is €, = 0.002 for A = 100.

The physical value of € may be determined by adjust-
ing the values of our model parameters (\, —m? and ¢)
so that they reproduce the physical pion mass (m, =
140MeV), and the pion decay constant f, = 93MeV and
the sigma mass m, in the vacuum. In the linear sigma
model f, is identified as the amplitude of the vacuum
condensate: o9 = fr. Then (80) and (82) give constraints:
(100)

s =

1 1
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Fig. 6. Temperature dependence of the scaled order parameter x = o/0¢. The curves are labeled by the value of €. Two figures

correspond to two different choices of the coupling strength A
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Table 1. )\ dependence of the sigma meson mass at zero tem-
perature and the scaled symmetry breaking parameter

A me (MeV)  &=¢/(mdego)
50 404 0.219
100 555 0.0846
200 772 0.0378
500 1208 0.0142
1000 1703 0.0069
which implies
A= 3(m5 —m2)/f? (101)
and
—-m? = (m?7 — 3m72r)/2. (102)

We note that since —m? > 0 these two relations give a

constraint A > 6m?2/f2 = 13.6 on the allowed values for
A. When we vary A from 50 to 500, m, varies from 400
MeV to 1200 MeV constrained by these relations. The cor-
responding values of € = ¢/m3¢g are determined by using
m3 = —2m? and ¢g = fr/xo where xq is the solution of
the scaled gap equation at zero temperature. Some repre-
sentative results are tabulated in Table 1. For large cou-
pling A, the sigma mass increases as my, ~ mg ~ \/A/3fr
and the relative strength of the symmetry breaking term
decreases as € = (my/mo)*(fz/P0) ~ 3X"H(my/fr)?. We
show in Fig. 7 the results for the temperature dependence

of the mass parameter for two different choices of the cou-
pling strength A. It is seen that the smooth transition
takes place at T' = 200 ~ 250 MeV. We note that the
physical scale of the transition temperature is set, in the
chiral limit, by v/2f, = 130 MeV, which is pushed little
higher by the long range fluctuations, which leads to the
first order transition at higher temperature in the chiral
limit, and by the explicit chiral symmetry breaking which
smooths out the transition.

An interesting question is whether the hysterisis can
survive for a sufficiently large value of X since € decreases
for large A. This is not the case, however, since the criti-
cal value of the € also decreases for small A\. One can see
this point noting that the argument of the second 1% iy

(99) becomes independent of A at large A: \/\/6pr/t ~
(mx/fx)//xt as A — oo. For any value of A the intro-
duction of the symmetry breaking term ¢ = m2 f, with
physical value for m, and f, washes away the hysteresis
behavior in the solution of the gap equatioon.

The dependnce of the chiral transition on the pion
mass has been studied earlier in terms of similar mod-
els by others [40,16]. As we have already emphasized,
our method differs in the point that ours incorporates the
Goldstones theorem explicitly in the chiral limit. For ex-
ample, in Larsen’s works the pion mass does not vanish
in the broken symmetry phase at low temperatures in the
chiral limit. However, in the presence of the explicit chiral
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symmetry breaking due to the finite pion mass, our nu-
merical results appears very close to those of Larsen’s [40)].
More rapid cross-over in the amplitude of the condensates
at slightly lower temperature 7" = 180 ~ 190MeV was ob-
tained by Meyer-Ortmanns and Schaefer [16] in the calcu-
lation which incorporates three light quark flavors (u, d, s)
into the chiral multiplets in an extended form of the lin-
ear o model. The latter calculation adopts the saddle point
approximation to the functional integral over the auxiliary
matrix field introduced in the calculation of the partition
function, a variant of the method which has been intro-
duced earlier to compute the leading 1/N approximation
to O(N) model [34]. It is therefore not easy to compare
their results directly to ours. We speculate, however, that
the main sourse of the difference in their numerical results
from ours originates not from the approximation method,
but rather from the additional (strangeness) flavor degree
of freedom in their calculation.

5 Summary

In this paper we have studied the chiral phase transition
at finite temperature using the meson sector of the linear
sigma model. We formulated a self-consistent approxima-
tion scheme starting from the one-loop effective potential
by imposing self-consistency conditions on the effective
meson mass equation, keeping the meson self-energy inde-
pendent of meson momentum. The resultant equations are
just the Dolan-Jackiw gap equations for multi-component
fields in the presence of non-vanishing meson condensate.
In this approximation, the meson mass parameter in the
thermal (imaginary time) meson propagator may be iden-
tified by analytic continuation as the mass of the real
mesonic excitations introduced in the system in equilib-
rium although in more general cases such simple identifica-
tion is not possible. This non-perturbative approximation
scheme has, however, a difficulty in choosing proper renor-
malization conditions to eliminate the divergent loop inte-
grals. We therefore adopted a phenomenological approach
which just ignores the divergent vacuum loops. This pro-
cedure is technically equivalent to introduce a zero mo-
mentum cut-off in the vacuum loop integral.

We showed that the solutions of the resultant gap
equations do not reproduce usual second order phase tran-
sition. We found, instead, that they exhibit hysteresis be-
havior characteristic of the first order transition in the
chiral limit. It is shown that this “premature transition”
is caused by the long range fluctuation of the mesons fields
whose effective masses become small in the transition re-
gion. We are however not able to calculate the transition
temperature from the gap equations alone; to do so we
need the information of the effective potential associated
with the approximation we employed in this work. Such
calculation may be performed by the method of the com-
posite operator effective potential developped by Corn-
wall, Jackiw, and Tomboulis [30,27]. We have made a pre-
liminary investigation in this direction [44]. The result will
be reported elsewhere.
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Inclusion of the symmetry breaking term generally tends
to smooth sharp phase transition, but in general, the first
order transition may survive if the symmetry breaking
scale is small enough. We found, however, that this is not
the case at least in our calculation: the physical pion mass,
together with the PCAC relation for the axial current,
gives a very strong constraint on the choice of the param-
eters of our model and the hysteresis behavior is smoothed
out irrespective of the coupling strength. We found that
smooth chiral transition takes place at T' = 200 ~ 250MeV
in our model, roughly consistent with recent results from
the state-of-art lattice QCD calculations at finite temper-
ature [12]. An advantage of the present approach based on
the effective degrees of freedom, expressing crucial aspects
of the symmetry behavior of the system, is that it is more
tractable for investigating more difficult problem of the
dynamics of the chiral transition in high energy nuclear
collisions where we expect non-equilibrium aspects may
play essential role [18-20]. We also plan to investigate
this problem in the future. [45]
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A Inclusion of Baryon

The original 0 model Lagrangian contains the baryon (nu-
cleon) fields coupled to meson fields by Yukawa coupling.
At low temperatures (T' << my ), we may expect the con-
tribution of the thermal baryon-antibaryon excitations is
negligible. This may not be so however near the transition
temperature since the baryon mass becomes smaller due
to the reduction of the o condensate which dynamically
generates the baryon mass. For example, in the lowest or-
der of the Yukawa coupling g,
my = go, (Al)
(see Fig. 8). We show in this appendix that the inclusion
of the baryon fluction in this approximation leads to the
results very similar to the Hartree approximation without
baryons. However, we show also that it is not a consistent
approximation for the meson propagators.

Inclusion of the baryonic excitations in the computa-
tion of the effective potential may be performed in the line
similar to mesonic excitations (Sect. 2) with one modifi-
cation that the functional integral over the Grassmann
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Fig. 8. The lowest order baryon self-energy diagram

variables, which represent “classical fermion field”, leads
to the change of the sign and the removal of the factor 1/2
in the one-loop contribution:

VP, ryon (Ba) = / Ak In det G (k) (A2)

where
1

B &+ My

is the thermal Green’s function for baryons with /& =
iwnYo + Vik; and the sum is taken over the fermion Mat-
subara frequency w, = (2n + 1)73~! which arises from
the anti-periodic boundary conditions for fermionic fields
in the path integral. The nucleon mass matrix is given
here by

Gn(k) (A3)

My = g(0 +iys7iT;) (Ad)
for non-vanishing ¢, = (7,7). Inserting (A3) into (A2)
and performing the determinant over Lorentz and isospin
indices we find

Vo (Ba) = =22 / ARk + °F  (A5)

where k? = w2 + k2. In this result, one factor 2 has arisen
from determinant in the Lorentz indices and may be at-
tributed to the spin degrees of freedom, while another fac-
tor 2 is due to the isospin degrees of freedom. Note that
fermionic loop contribution is larger than that of bosonic
loop by another factor 2 due to the distinction of parti-
cle and anti-particle in case of fermion. In the presence of
non-vanishing pion field ¢?¢? plays the role of the square
of the effective nucleon mass, as expected simply from the
symmetry consideration.

Adding this term to the effective potential gives rise
to new terms in the stationary conditions for the meson
fields and the meson mass equations. We could modify our
“Hartree approximation” by inserting the following term
to the meson self-energy to the right hand side of (56) and
(57) :

13 (m) = T (m) = ~8g°00m%)  (AG)
with )
Us(M) = | d*h—5—rs A
o0 = [ athn (A7)

where the factor 8 = 2 -2 -2 in (A6) accounts for the
particle-antiparticle, spin, and isospin degeneracy and the
subscript F in (A7) indicates that the sum is taken over
the fermionic Matsubara frequency.

This result resembles remarkablly the ones we have
obtained for the meson loop contribution to the meson
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B B
@ - g@ q -
@ (b)

Fig. 9. Baryon loop diagrams which contribute to the self-
energy of sigma a and pion b

self-energies (58). Inclusion of the baryon loop contribu-
tion to the meson self-energy is not a consistent proce-
dure, however, in view of the procedure we have adopted
to drop the diagrams in Fig. 3, since both diagrams gen-
erate non-trivial momentum dependence or dispersion in
the self-energy of mesons and thus again invalidates our
ansatz (55) for the meson propagators.

B High temperature expansion of one-loop
integrals

Phase space integral in one-loop diagrams contain definite
integrals of the following form:

I

() /OO o : (B1)
u) = .
0 VaR4pPeVete? £

For example, the boson (fermion) loop contributions to
the meson self-energies is

~ ek 1 1 5 1
¢6(M) - / (27T)3E—k€f3Ek +1 =P 2% f)(Mﬁ)7
(B2)

while the pressure of ideal gas of boson (fermion) with
mass M is

P = 67" [

41
— st Lo,

d3k
Gy n (17
™

(B3)

where +(—) sign is for fermion (boson).

The functions I(i") (u) satisfy the following recursion
relations:

d _(n n—1_(h—
gl = === 1) (B4)

and have the following limits for y — 0:
1(0) = F(n)¢(n), (B5)
17(0) = (1 = 2'=")I(n)¢(n), (B6)

where I'(z) is the gamma function and ((z) = Y~ 1/m®
is the Riemann ¢ function.

We wish to evaluate the integral ™ (11) for the small

nonvanishing value of © = Mg, corresponding to high

temperatures (T >> M), however, the power series ex-

(n)

pansion of I}’ (1) would break down at u™ since the gamma
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function I'(z) is singular at negative integer values of x.
These singularities originate from the infrared (small x)

part of the integral I (in). In the case of boson it is enhanced

due to the additional singular behavior of the distribution

function of massless boson at small z: 1/(e” — 1) ~ 1/x.
Series expansion of Ij(tn)(u) was derived by Dolan and

Jackiw in [43] for even integer value of n. Here we quote
some of their useful results:

Tt w2 3 W
1(4) _ R
+ =130 3 Tl
3 /3
3 <§ - 2’)’) pt+0(u°), (B12)

for fermion.
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